

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

bureau of disease prevention and environmental control

EPIDEMIOLOGIC NOTES AND REPORTS FOOD POISONING - Laredo, Texas

An outbreak of gastroenteritis presumably due to Staphylococcal food poisoning occurred Thursday, March 21, following a noon meal served to school children at 16 olementary schools in Laredo, Texas. Ill children began reporting to the emergency room of the city's hospital at 3:00 p.m., Thursday, with symptoms of vomiting and abdominal cramps, and during the remainder of the afternoon and evening, a total of 615 children were seen. Treatment was symptomatic, no cases were hospitalized for more than a few hours, and no deaths occurred.

Symptom and food histories were obtained from 5,540 (95 percent) of the 5,824 school children who consumed
CONTENTS
Epidemiologic Notes and Reports
Food Poisoning - Laredo, Texas109
Kala-azar - Baltimore, Maryland 110
Fatal Case of Malaria 111
Meningococcal Disease - Portland, Oregon
112
Measles - Rockport, Montana 112
Current Trends
Measles - United StaSurveillance Summary
Newly Reported Active Tuberculosis Cases -United States 1967114
United States 1967 114
international Notes
Quarantine Measures 120
the meal. A total of 1,364 children were ill, giving an attack rate of 24.6 percent. Attack rates in the various schools ranged from 4.9 percent to 54.2 percent. Symptoms included abdominal cramps (70.6 percent), vomiting (70.4 (Continued on page 110)

TABLE I. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
(Cumulative totals include revised and delayed reparts through previous weeks)

DISEASE	13th WEEK ENDED		$\begin{gathered} \text { MEDIAN } \\ 1963-1967 \end{gathered}$	CUMULATIVE, FIRST 13 WEEKS		
	$\begin{gathered} \text { March } 30, \\ 1968 \end{gathered}$	$\begin{gathered} \text { April } 1, \\ 1967 \end{gathered}$		1968	1967	$\begin{gathered} \text { MEDIAN } \\ 1963-1967 \end{gathered}$
Aseptic meningitis	28	23		353		
Brucellosis .	4	23 5	27 5	353 23	359 49	359 54
Eiphtheria.	1	6	4	37	34	50
Encephalitis, primary: Arthropod-borne \& unspecified		19		187	24	5
Eneephalitis, post-infectious	17 10	19	.	187	292	...
Hepatitis, serum .	10 89	20 48		114 915	172 488	
	89 898	48 847	828	915 10.783	488 10395	10.883
Malaria .	898 56	847 49	4	10.783 585	10,395 529	25
Meningor (rubeala) .	851	2,660	10.949	8.061	29,969	116,815
Civilian	89	64	71	1.046	768	817
Military	78	53		954	706	
Mumps .	11	11		92	. 62	
Poliomyelitis .	5,160	. -		66.056		
Paralytic	-	-	1	15	3	6
Rubella (German .	1.932	1.40	1	15	3	. 5
Streptococcal sore throat \&	1,932	1.469		14,168	13.629	
Tetanus .	11,069	11.944	11.683	149,535	159.650	146.284
Tularemia	1	4	1	26	38	43
Typhoid fever .	1	4	2	18	32	51
Typhus, tick-borne (Rky. Mt.	7	7	7	56	70	79
Rabies in animals .	1 87	137	132	4 928	8 1.095	1096

TABLE II. NOTIFIABLE DISEASES OF LOW FREQUENCY

Ant	Cum.		Cum.
Botulism:	1	Rabies in man:	-
Leptospirosi	-	Rubella, Congenital Syndrome:	3
Plague: N.J.-1, Calif.-1*	6	Trichinosis: Ohio-1	11
Psittacosis: Mich.-1. Ohio-2	11	Typhus, murine: Polio, Unsp.: .	2

percent), headache (41.5 percent), and diarrhea (19.4 percent). Incubation periods ranged from 1 to 9 hours, with the largest number of cases occurring 3 to 6 hours after consumption of the meal.

School lunches in Laredo are prepared in a central kitchen and distributed to the various elementary schools. Items served at the March 21 lunch included chicken salad, lettuce and tomato. french fried potatoes, cupcakes, hot rolls, and milk. Food histories implicated chicken salad as the food responsible for the outbreak (Table 1).

Preparation of the chicken salad began Wednesday afternoon. March 20 , when frozen hens were boiled for 3 hours. After cooling, the hens were deboned, cooled with a fan, ground into small pieces, placed in 12 -inch-deep aluminum pans, and stored overnight in a cooler which was maintained at $42-45^{\circ} \mathrm{F}$. The following morning, pickles, pimento, and mayonnaise were added to the chicken, and the mixture was blended in an electric mixer. The food was placed in thermal carriers and transported to the schools by trucks. None of the schools had facilities for refrigerating food, and the salad was kept at room temperature until served between 11:30 and 12:00 a.m. March 21 was a cold day in Laredo, and the heating systems were operating in all classrooms. Several persons mentioned that rooms where the food had been stored were stuffy, and several teachers commented that the chicken salad was warm when consumed. At some of the schools, the food arrived at 9:15 a.m., while at others it arrived at

10:30 a.m. The schools which received the food at an earlier time had a significantly higher attack rate (32.6 percent) than those which received the food at $10: 30$ (18.4 percent).

Cultures of the chicken salad taken from the central kitchen grew coagulase-positive Staphylococcus aureus and two gram-negative organisms tentatively identified as pseudomonas and Escherichia coli. Nose, throat, and fingernail cultures taken from the 17 food handlers disclosed one person with a positive nasal culture for S. aureus and two other persons with positive throat cultures. No furuncles, abscesses, or hand or finger lesions were detected in any of the food handlers. Further bacteriologic studies, including phage typing and toxigenicity of the staphylococcal isolates are in progress.

Recommendations for prevention of further outbreaks included delivering the school lunches as late in the morning as possible, installing refrigeration facilities in the schools, eliminating deep pans for storage of warm meat, and removing the staphylococcal carriers from food handling until repeat cultures are negative.
(Reported by J. E. Peavy, M.D., M.P.H., Commissioner of Health, and M.S. Dickerson, M.D., M.P.H., Director, Communicable Disease Division, Texas State Department of Health; Jose L. Gonzalez, P.E., M.P.H., Administrator, Laredo-Webb County Health Department; and a team of EIS Officers.)

Table 1
Food Histories of Students Consuming School Lunch Laredo, Texas - March 21, 1968

Food					ATE			
	Well	III	Total	Attack Rate (Percent)	Well	III	Total	Attack Rate (Percent)
Chicken salad	3442	1316	4758	27.7	734	48	782	6.1
Lettuce and tomato	3279	1103	4382	25.2	897	261	1158	22.5
French fries	3858	1252	5110	24.5	318	112	430	26.0
Cupcakes	3954	1264	5218	24.2	222	100	322	31.1
Hot rolls	3793	1261	5054	25.0	383	103	486	21.2
Milk	3547	1211	$\mathbf{4 7 5 8}$	25.5	629	153	782	19.6

KALA-AZAR - Baltimore, Maryland

An 18-year-old Greek male immigrant was admitted to a Baltimore hospital on March 25, 1968, with a 10 -week history of weakness, malaise, weight loss, fever, chills, night sweats, vomiting, pallor, and epistaxis. An enlarged spleen and liver were palpated on physical examination. There were no skin lesions, heart murmurs, or peripheral lymphadenopathy. Admission hematocrit was 35 percent, white cell count 2,900 per mm^{3} (34 percent polymorphonuclear leukocytes, 36 percent lymphocytes, 26 percent
monocytes, and 2 percent eosinophiles), platelets 110,000 per mm^{3}, and reticulocytes 3.0 percent. Liver function tests revealed an albumin-globulin ratio of $3.4 / 5.8$, ${ }^{-}$ cephalin flocculation, and a thymol turbidity of 19.0 . The temperature chart showed two daily paroxysms as high as $103.8^{\circ} \mathrm{F}$.; the first occurred regularly between $4 \mathrm{a} . \mathrm{m}$. and 8 a.m., the second at 8 p.m. Infectious mononucleosis, malignant disease, tuberculosis, and chronic malaria were included in the differential diagnosis. A sternal bone
marrow aspirate contained numerous intracellular bodies characteristic of Leishmania donovani (e.g. LeishmanDonovan bodies). Therapy with Pentostam* (sodium stibogluconate) was begun on March 31, 1968.

The patient's father had worked as a shepard in rural Greece before the family immigrated to the United States in March 1967. All family members had been in close contact with dogs and poultry. An uncle died in 1967 of a ruptured echinococcal cyst. Serologic evaluation of the patient and his family for leishmaniasis and echinococcosis is planned at NCDC.
(Reported by Dr. Philip A. Tumulty, Professor of Medicine, Johns Hopkins University School of Medicine; Dr.James E. Peterman, Chief, Communicable Diseases, Baltimore City Health Department; Dr. John II. Janney, Jr., Acting Chief, Division of Communicable Diseases, Maryland State Health Department; and the Parasitic Disease Drug Service, NCDC.) Editorial Comment:

Kala-azar (visceral leishmaniasis) is an infectious reticuloendothelial disease characterized by chronicity,
irregular fever, enlargement of the spleen and often of the liver, and the presence in these and other organs of the protozoa Leishmania donovani. The disease is endemic in the Mediterranean basin, the Sudan, India, East Pakistan, China, the Soviet Union, and certain areas of South America. Several species of sandfly (Phlebotomus) act as the vector. Infected dogs constitute an important animal reservoir. Kala-azar (visceral leishmaniasis) must be distinguished from oriental sore (cutaneous leishmaniasis) and espundia (American leishmaniasis) which are clinically and geographically distinct disease associated with the same genus, Leishmania. Pentavalent antimony compounds are the treatment of choice against non-resistant strains. ${ }^{1}$

[^0]
FATAL CASE OF MALARIA

On August 16, 1967, a 20-year-old serviceman who was on temporary leave in Hawaii from duty in Vietnam Was admitted to an Army hospital. He had a 2-day history of chills and fever. On admission, physical findings included nuchal rigidity, trismus, hepatosplenomegaly, bilateral Babinski's reflexes, and hyperactive bilateral deep tendon reflexes with unsustained clonus. Within an hour after admission, the patient became semicomatose and disoriented. A blood smear revealed a 10 percent parasitemia with Plasmodium falciparum. Between August 16 and 19, his hemoglobin dropped from 13.7 to 9.8 gm percent, and the hematocrit from 40.5 to 31.5 percent. The white blood count showed a mild leukocytosis with a left shift. The BUN on admission was 25 mg percent. Total bilirubin was 3.0 mg percent with the direct fraction being 0.6 mg percent. The serum specimen showed evidence of hemolysis. Urinalysis revealed a specific gravity of 1.037 with $1+$ albumin. Spinal fluid pressures were at the upper limits of normal. The EEG changes were compatible with a diffuse, acute destructive process. The total blood volume was increased, mainly by the plasma component. Chest x-rays showed pulmonary edema and a pneumomediastinum. The parasite count on August 17 was 50,400 per mm^{3}.

The patient was given 650 mg of quinine intravenously and 250 mg of chloroquine every 8 hours. Because of
anuria, fluids and mannitol were administered with good initial response, but later the urinary output decreased again. The patient was given dexamethasone and cephalothin because of a pulmonary infiltrate. Heparin was administered as intravascular coagulation was suspected. During hospitalization, pneumothorax developed bilaterally. On August 18, his temperature rose to $103^{\circ} \mathrm{F}$., but was subsequently maintained between 98 and $100^{\circ} \mathrm{F}$.

The patient failed to respond to therapy and died on August 19. Postmortem examination revealed cerebral malaria with edema, pulmonary congestion and edema with bilateral hydrothorax, and acute congestion of spleen, liver, and kidneys.
(Reported by Alvin E. Smith, CPT, MC, USA, and Robert McNamara, CPT, MC, USA, Tripler General Hospital, Hawaii; and Robert Penington, Jr., M.D., Chief, Epidemiology Branch, Hawaii State Health Department.)

Editorial Comment

This represents the second fatal case of falciparum malaria reported in the United States in 1967. It illustrates the rapidity with which cerebral signs and symptoms can develop in infections with P. falciparum.

MENINGOCOCCAL DISEASE - Portland, Oregon

On the evening of February 10, 1968, a 26 -year-old male developed fever and weakness which was followed several hours later by nuchal rigidity and petechial rash. He was admitted to a hospital early on the morning of February 11. Cultures of spinal fluid and blood were positive for Neisseria meningitidis Group B that was subse-
quently found to be sensitive to sulfadiazine at a concentration of 0.1 mg percent. Despite treatment with high doses of penicillin, chloramphenicol, and sulfadiazine, the patient died on February 12.

MENINGOCOCCAL DISEASE - (Continued from page 111)

A 20-year-old female, a fellow employee, who had close contact with the patient on February 9, was started on a 5 -day course of penicillin prophylaxis which consisted of 1.6 million units orally per day on February 12. Approximately 12 hours after the final dose of penicillin, she developed fever and chills. She was admitted to the hospital on February 19, and that same day, a Group B meningococcus with an antibiotic sensitivity pattern similar to the first patient's organism was isolated from blood and throat cultures. She was successfully treated with sulfonamides and penicillin. N. meningitidis was recovered from the nasopharynx of a third person, an asymp-
tomatic contact of the second case, despite the fact that this contact had received 3 days of 1 million units of penicillin as prophylaxis.
(Reported by Thomas L. Meador, M.D., City Health Officer, Portland Oregon; and an EIS Officer.)

Editorial Comment:

It is well established that penicillin, even when given in doses higher than used here, usually fails to eradicate the meningococcal carrier state. If a meningococcal strain proves to be sulfonamide-sensitive, as in these cases, use of sulfonamides is still the only reliable means for eradicating nasopharyngeal carriage.

MEASLES - Rockport, Montana

On March 2, a physician's communicable disease report to the Montana State Board of Health initiated the uncovering of a community-wide measles epidemic in Teton County, in northwestern Montana. The 48 cases, entirely confined within a Hutterite colony known as Rockport, (population 85) demonstrated unusual age specific attack rates for a measles epidemic in the continental United States.

The index case was a 9 -year-old male. After exposure to known measles cases in another Hutterite colony on January 3, the boy returned to his home in Rockport where on January 14, he developed measles. A first wave of 11 cases occurred among his primary contacts 10 to 20 days later. Beginning February 8, a second wave of 23 cases further spread measles throughout the colony. (Figure 1).

Analysis of the cases by age (Table 2) shows a 94 percent attack rate for all persons in the colony age 20

Table 2
Reported Measles Cases by Age
Rockport, Teton County, Montana, 1968 (Jan.-March)

Age Group (Years)	Population	Cases	Case Rate Per 100 Population
Under 1	3	1	33.3
$1-5$	13	12	92.3
$6-10$	14	14	100
$11-15$	7	7	100
$16-20$	14	14	100
21 and over	34	0	0
Total	85	48	56.5

years or younger; three children, 1-year-old or less, who received measles vaccine before the second epidemic

Figure 1

wave, did not develop measles. There were no cases among the 34 persons in the colony over age 20 years. Of particular interest is that 18 cases (38 percent) occurred in the $14-20$ year age group. One patient, a 20 -year-old female, was hospitalized because of severe bronchitis and dehydration. The last known measles outbreak in this colony occurred prior to 1947 before the colony moved to Montana from McGrath, Canada.

There are 14 Hutterite colonies known in Montana. These people live in complete economic and social isolation from the mainstream of life in Montana. Efforts have been initiated to reach all colonies for immunization of persons with no previous history of measles.
(Reported by Mary E. Soules, M.D., State Epidemiologist, and Mr. Don Pratt, Public Mealth Advisor, Montana State Board of Health; and State Services Section.)

CURRENT TRENDS
 MEASLES - United States

A total of 851 cases of measles were reported for the week ending March 30, 1968. This is 1,809 cases less than the 2,660 cases reported for the corresponding week in 1967.

During the 4 -week period, February 25 through March 23, 1968 (weeks $9-12$), 3,006 cases of measles were reported to NCDC. This is an increase of 623 cases over the total
for the preceding 4 -week period, but is only 27 percent, 8.2 percent, and 6.8 percent of the cases reported for the comparable 4-week periods in the years 1967, 1966, and 1965 respectively (Figure 2). The seasonal increases in 1966-67 and 1967-68 are more readily seen in the Figure 2 inset.

Figure 2
REPORTED MEASLES BY FOUR-WEEK PERIODS - UNITED STATES EPIDEMIOLOGIC YEAR, 1967-68 COMPARED WITH 1964.65, 1965.66, AND 1966.67

SURVEILLANCE SUMMARY NEWLY REPORTED ACTIVE TUBERCULOSIS CASES - United States 1967

Reports from state health departments, based on provisional information, indicate that 45,441 new active tuberculosis cases were reported for the United States during 1967. These preliminary figures suggest that the final count for the year will show a decrease in new active cases compared with 1966 (47,767 cases).

Although the decrease in new active tuberculosis cases was 5 percent for the United States as a whole,
new active tuberculosis cases and case rates EACH STATE, 1966 AND 1967

State	1966 Proutatonal		1966 Final		1967 Provistonal	
	Number	Rate*	Number	Rate*	Number	Rate\#
U.S. Total	48,026	24.5	47.767	24.4	45,441	23.0
Continental U.S.	47,617	24.4	47,361	24.3	44,981	22.9
Alabama	1,249	35.5	1,214	34.6	1,515	42.8
Alaska	147	54.0	147	55.5	107	39.3
Arizoma	487	30.1	503	31.4	436	26.7
Arkansas	589	30.1	587	30.0	498	25.3
California	4,653	24.6	4,658	24.8	4,228	22.1
Colorado	239	12.1	223	11.4	239	12.1
Connecticut	293 (a)	10.2	293(a)	10.2	418	14.3
Delaware	173	33.8	173	33.7	127	24.3
Digtrict of Columbia	619	76.6	553	68.6	477	59.0
Florida	1.574	26.5	1,573	26.7	1,601	26.7
Georgia	1,270	28.5	1,273	28.6	1,110	24.6
Ravail	262	36.5	259	35.8	353	47.8
Idaho	65	9.4	65	9.3	55	7.9
I111nois	2,959	27.6	2,938	27.2	3,049	28.0
Indiana	981	19.9	1,051	21.2	1,033	20.7
Iova	181	6.6	184	6.7	160	5.8
Kansas	266	11.8	279	12.3	219	9.6
Kentucky	1.344	42.2	1.241	39.0	1.086	34.1
Louisiana	1,000	27.8	1,029	28.4	912	24.9
Maine	128	13.0	128	13.1	120	12.3
Maryland	1.200	33.2	1,217	33.7	1,177	32.0
Nassachusetts	924	17.2	910	16.8	910	16.8
Michigan	2,425	29.0	2,263	26.7	1,923	22.4
Minnesota	380	10.6	400	11.2	376	10.5
Mississippi	658	28.3	654	28.0	604	25.7
kissouri ..	1,046	23.2	1,049	23.0	888	19.3
Montana	96	13.7	105	15.0	87	12.4
Mebranka	126	8.7	132	9.2	128	8.9
Mievada.	229	50.4	- 231	53.6	152	34.2
New Hampahire	54	7.9	54	8.0	42	6.1
New Jersey ..	1,601	23.2	1,592	23.1	1,448	20.7
New Mexico	267	26.1	267	26.6	248	24.7
New York	5,345	29.3	5,296	29.1	5,030	27.4
North Carolina	1,284	25.7	1,266	25.5	1,255	25.0
North Dakota	43	6.6	42	6.5	51	8.0
Ohio	1.507	14.6	1.639	15.8	1,525	14.6
Oklahoma	500	20.3	538	21.7	410	16.4
Oregon ...	387	19.8	386	19.6	322	16.1
Pennsylvania	2,675	23.1	2,664	23.0	2.716	23.4
Rhode Island	140	15.6	140	15.6	148	16.4
South Carolina	698	27.0	690	26.7	688	26.5
South Daketa	159	23.3	158	23.3	128	19.0
Tennessce	1,413	36.4	1.380	35.7	1,223	31.4
Texas	3,135	29.2	3.037	28.3	3, 195	29.4
Utah	74	7.3	75	7.4	65	6.3
Versont	35	8.8	35	8.5	44	10.6
Virginia	1,599	35.5	1.573	35.2	1,416	31.2
Washington	555	18.6	551	18.1	522	16.9
West Virginia	489	27.3	544	30.1	501	27.9
Hisconsin	475	11.4	480	11.5	445	10.6
Wyoming	28	8.5	28	8.8	31	9.8
Ruerto Rico (b)	1,352	50.7	1.247	46.7	1,055	39.1

(a) Excludes 235 diagnosed cases not officially reported.
(b) Not included in totals.

* Rate per 100,000. Population based on U.S. Bureau of Census, Current Population Reports, Series P25, No. 380, November 24, 1967.
(March 8, 1968)
the decline was less for the large cities (3 percent) than for the rest of the country (6 percent).

In 37 states the 1967 provisional case rates were lower than the 1966 rates; in 11 states the rates were higher; and in two states there was no change. The case rates for the states ranged from a high of 47.8 per 100,000 population in Hawaii to a low of 5.8 in Iowa.
(Reported by Tuberculosis Program, NCDC.)

NEW ACTIVE TUBERCULOSIS CASES, 1966 AND 1967
Cities of 250,000 or More Population

CIties	$\begin{gathered} 1966 \\ \text { Provisional } \end{gathered}$	$\begin{aligned} & \hline 1966 \\ & \text { Final } \end{aligned}$	$\begin{gathered} 1967 \\ \text { Proviaional } \end{gathered}$
Akron, Ohio	42	42	42
Albuquerque, N. Mex.	31	31	40
Atlanta (Fulton Co.), Ca.	291	288	230
Baltimore, Md.	701	691	673
Birainghati, Ala.	187	187	172
Boston, Mass. ..	290	283	278
Buffalo, N.Y.	215	229	190
Chicago, Ill.	1,996	1,977	2,038
Cincinnati, Ohio	134	150	142
Cleveland, Ohio	262	285	284
Columbus, Ohio	104	108	86
Dallas, Texas	186	186	237
Dayton, Ohio.	72	81	91
Denver, Colo.	102	94	78
Detroit, Mich.	1,070	1,070	963
E1 Paso, Texas	155	157	92
Ft. Worth, Texas	106	112	101
Honolulu, Havait	124	122	184
Houston (Harris Co.), Texas	531	531	620
Ind lanapolis (Marion Co.), Ind.	320	303	304
Jersey City, N.J.	133	131	116
Kansas City, Mo.	181	181	148
Long Bleach, Calif.	103.	101	56
Lor Angeles, Calif.	917	924	885
Loulaville (Jefferson Co.), Ky.	223	218	192
Memphis (Shelby Co.), Tenn.	163	141	170
Miami (Dade Co.), Fla.	361	365	354
Miluaukee, Wiac.	222	162	188
	69	74	72
Nashville (Davidson Co.), Tenn. .	121	143	148
Mevark, M.J.	213	315	291
Neu Orleans, La.	260	260	205
New York, M.Y.	3.607	3.663	3,590
Norfolk, Va.	100	95	138
Oakland, Calif.	117	121	82
Oklahoma City, Okla.	85	89	99
Omaha (Douglas Co.), Nebr.	77	77	64
Philadelphia, Pa.	961	952	940
Phoenix, Ariz.	131	129	94
Pittsburgh, Pa.	276	276	275
Portland, Ore.	168	167	118
Rochester, :1.Y.	113	119	85
Sacramento, Calif.	134	133	127
St. Louis, Mo.	328	303	285
St. Paul, Minn.	49	53	57
San antonio, Texas	220	220	295
San Diego, Calif. . .	104	102	138
San Francisco. Calif.	419	419	366
San Jose, Calif.	55	54	72
Seattle, Wash.	134	128	148
Tampa, Fla.	89	89	93
Toledo, Ohio	59	69	63
Tucson, Ariz.	71	71	54
Tulsa, Okla.	70	65	65
Hashington, E.C.	619	553	477
Hichita, Kans,	32	39	31
Total 56 Cities	17,903	17,928	17,426
Remainder of U.S.	30,123	29,839	78, 015
United States	48,026	47,767	45.441

Data show are for county uhere information is not available separately for principal city.
(March 8, 1968)

ASEPTIC MENINGITIS - United States

For 1967, a preliminary total of 2,974 cases of aseptic meningitis were reported to NCDC. As in previous years, a characteristic summer peak was again observed (Fig. ure 3). Although this peak coincides with that of reported
encephalitis, and although many agents cause both syn dromes, there is no clear relationship between total num ${ }^{-}$ bers of cases of encephalitis and aseptic meningitis re^{-} ported to NCDC over the past 4 years (Figure 4).

Preliminary totals of non-poliomyelitis enterovirus isolates reported from 19 state laboratories for 1967 are summarized in Table 3. Although these represent a very small percentage of all cases of enterovirus associated disease, this tabulation may roughly reflect the frequency of occurrence of these agents. Two agents were responsible for the major part of these isolates: Coxsackie B5, which was recovered over wide areas of the country, and ECHO 9 , which was recovered extensively, but in a somewhat more focal distribution.
(Reported by Neurotropic Viral Diseases Unit, Viral Diseases Section, and Statistics Section, NCDC.)

Figure 3
REPORTED CASES OF ASEPTIC MENINGITIS BY MONTH UNITED STATES, 1964-1968

onta

Figure 4
CASES OF ENCEPHALITIS AND ASEPTIC MENINGITIS

Table 3
Non-Poliomyelitis Enterovirus Isolates
1967

Diviston - State	ECHO \irus					Coxamekie								Total
	4	6	9	11	Other	d9	A16	B1	B22	B3	B 4	Bj	Other	
North East														
Massachusetts		1										2		3
Connecticut				2										2
East North Central														
Ohio		1	72		4							13		90
Illinois		1	3		4							41		49
Michigan	1	2	3		6	1	\square		3		1	16	6	41
West North Central														
Minnesota				1					2	1		19		23
Missouri								1						1
Kansas												7		7
South Atlantic														
Virginia	1	1	11									1		14
North Carolina		9	7		2	17	6		1			30	1	73
Georgia		1			1									10
East South Central														
Kentucky	2				1							1		4
Tennessee					1		1		1			27		30
West South Central														
Arkansas												1		1
Louisiana	1		1		10			1	2	1	2	8		26
Texas			1		1						2		1	5
Mountain														
Utah		1										7	3	11
Pacific														
Washington					1									1
California*	2	1	1		6	3			1			7		22
Total	7	18	99	3	37	21	9	2	10	2	6	188	11	413

* Associated with reported encephalitis only.

Table iII. Cases of Specified notifiable diseases: united states
FOR WEEKS ENDED
MARCH 30. 1968 AND APRII. I, 1967 (13th WEEK)

AREA	ASEPTIC MENINGITIS		BRI Chillosis	Diphtinema	ENCEPHALITIS			HEPATITIS			MALARIA	
			Primary including unsp. cases		Post- Infectious 1968	Serum	Infectious					
	1968	1967		1968		1968	1968	1967	1968	1968	1967	1968
UNITED STATES...	28	23	4	1	17	19	10	89	898	847	56	
new engiand.	-	-	-	-	4	1	-	-	34	45	-	
Maine..............	-	-	-	-	-	-	-	-	1	7	-	
New Hampshire......	-	-	-	-	-	-	-	-	1	3	-	
Vermont.............	-	-	-	-	-	-	-	-	-	-	-	
Massachusetts......	-	-	-	-	4	1	-	-	17	14	-	
Rhode Island.......	-	-	-	-	-	-	-	-	6	7	-	
Connecticut........	-	-	-	-	-	-	-	-	9	14	-	
MIDdLE atLantic......	-	-	-	-	4	7	-	28	124	151	6	
New York City......	-	-	-	-	3	2	-	20	41	29	1	
New York, up-Statet	-	-	-	-	-	-	-	1	23	30	-	
New Jersey..\%......	-	-	-	-	-	-	-	5	19	55	3	
Pennsylvania.......	-	-	-	-	1	5	-	2	41	37	2	
EAST NORTH CENTRAL...	5	5	-	-	5	5	2	8	130	135	1	
Ohio................	-	-	-	-	1	2	-	1	47	20	-	
Indiana.............	1	2	-	-	4	-	-	-	6	35	-	
Illinois...........	-	2	-	-	-	2	1	2	39	28	-	
Michigan...........	3	1	-	-	-	1	1	5	31	41	1	
Wisconsin..........	1	-	-	-	-	-	-	-	7	11	-	
WEST NORTH CENTRAL...	1	-	2	-	-	-	1	-	38	51	4	
Minnesnta..........	1	-	-	-	-	-	1	-	8	13	-	
Iowa...............	-	-	2	-	-	-	-	-	10	2	2	
Missouri...........	-	-	-	-	-	-	-	-	11	24	-	
North Dakota.......	-	-	-	-	-	-	-	-	,	2	-	
South Daknta... ..	-	-	-	-	-	-	-	-	1	1	-	
Nebraska...........	-	-	-	-	-	-	-	-	4	3	-	
Kansa3..............	-	-	-	-	-	-	-	-	4	6	2	
SOUTH ATLANTIC.	3	2	-	1	2	1	1	-	103	100	18	
Delaware...........		-	-	,	-	-	-	-	3	-	-	
Maryland...........	1	-	-	-	1	1	-	-	14	18	-	
Dist. of Columbia..	-	-	-	-	-	-	-	-	1		-	
Virginia...........	-	-	-	-	1	-	-	-	12	20	-	
West Virginia......	1	-	-	-	-	-	-	-	3	6	-	
North Carolina.....	-	2	-	-	-	-	-	-	10	5	10	
South Carolina.....	-	-	-	-	-	-	-	-	2	3	-	
Georgia.............	-	-	-	-	-	-	-	-	42	38	8	
Florida............	1	-	-	1	-	-	1	-	16	10	-	
EAST SOUTH CENTRAL...	4	2	-	-	-	2	4	-	80	53	1	
Kentucky............	1	1	-	-	-	1	-	-	16	15	1	
Tennessee...........	1	-	-	-	-	1	4	-	43	18	-	
Alabama............	2	-	-	-	-	-	-	-	13	5	-	
Mississippi........	-	1	-	-	-	-	-	-	8	15	-	
WEST SOUTH CENTRAL...	3	3	1	-	-	-	-	2	73	76	10	
Arkansas...........	-	1	-	-	-	-	-	-	1	3	-	
Louisiana...........	-	-	-	-	-	-	-	1	15	10	1	
Oklahoma............	-	1	-	-	-	-	-	-	9	7	9	
Texas...t...........	3	1	1	-	-	-	-	1	48	56	-	
MOUNTAIN.	-	-	-	-	-	1	-	-	61	45	1	
Montana............	-	-	-	-	-	-	-	-	9	8	-	
Idaho...............	-	-	-	-	-	-	-	-	4	5	-	
Wyoming.	-	-	-	-	-	-	-	-	-	1	-	
Colorado............	-	-	-	-	-	1	-	-	22	16	1	
New Mexico..........	-	-	-	-	-	-	-	-	3	3	-	
Arizona............	-	-	-	-	-	-	-	-	13	4	-	
Utah................		-	-	-	-	-	-	-	9	8	-	
Nevada..............	-	-	-	-	-	-	-	-	1	-	-	
PACIFIC.	12	11	1	-	2	2	2	51	255	191	15	
Washington.........	-	-		-		-	-	1	21	30	5	
Oregon..............	I	1	,	-		-	1	-	14	14	-	
California.........	11	6	1	-	2	2	1	49	220	147	5	
Alaska..............	1	-	-	-	-	-	1	-	-	-	5	
Hawaii..............	1	4	-	-	-	-	-	1	-	-		
Puerto Rico...........	-	-	-	-	-	-	-	-	17	26	1	

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
MARCH 30, 1968 AND APRIL 1,1967 (13 th WEEK) - CONTINUED

Meningococcal infections:
Mumps:
Rubella:
N. J. delete 3, W. Va. delete 10, Hawaii delete 2
N.H. 1

Me. 3
Me. 4, W. Va. 10

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
MARCH 30, 1968 AND APRIL I. 1967 (13 th WEEK) - CONTINLIED

AREA	STREPTOCOCCAL SORE THROAT \& SCARLET FEVER	TETANUS		TULAREMIA		TYPHOID		TYPHUS FEVER TICK-BORNE (Rky. Mt. Spotted)		RABIES IN ANIMALS	
	1968	1968	$\begin{aligned} & \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	Cum. 1968	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$
UNITED STATES...	11,069	1	26	1	18	7	56	1	4	87	928
new england.	1,684	-	-	-	-	-	2	-	-	8	38
Maine... *......... . .	22	-	-	-	-	-	-	-	-	8	37
New Hampshire.....	-	-	-	-	-	-	-	-	-	-	1
Vermont............	-	-	-	-	-	-	-	-	-	-	-
Massachusetts.....	301	-	-	-	-	-	1	-	-	-	
Rhode Island.......	208	-	-	-	-	-	-	-	-	-	
Connecticut........	1,153	-	-	-	-	-	1	-	-	-	
MIDDIE ATLANTIC......	475	-	6	-	-	1	7	-	-	1	10
New York City......	40	-	3	-	-	1	5	-	-	-	-
New York, Up-State.	368	-	3	-	-	-	1	-	-	1	6
New Jersey.........	NN	-	-	-	-	-	-	-	-	-	
Pennsylvania.......	67	-	-	-	-	-	1	-	-	-	4
EAST NORTH CENTRAL. .	1,177	-	3	-	3	1	9	-	-	10	59
Ohio...............	244	-	-	-	1	-	6	-	-	5	29
Indiana............	186	-	-	-	-	1	1	-	-	3	13
Illinois...........	270	-	2	-	1	-	1	-	-	1	7
Michigan..	235	-	1	-	1	-	-	-	-	-	3
Wisconsin.	242	-	-	-	-	-	1	-	-	1	7
WEST NORTH CENTRAL...	511	1	2	-	4	-	3	-	-	14	169
Minnesota..........	42	-	-	-	-	-	-	-	-	3	42
Iowa.	201	-	-	-	-	-	-	-	-	1	37
Missouri...........	8	1	2	-	2	-	2	-	-	6	41
North Dakota.......	100	-	-	-	-	-	-	-	-	2	33
South Dakota.......	49	-	-	-	1	-	1	-	-	-	
Nebraska............	94	-	-	-	-	-	-	-	-	1	8
Kansas.............	17	-	-	-	1	-	-	-	-	1	8
SOUTH ATLANTIC.......	1,367	-	2	-	4	3	16	1	3	14	115
Delaware...........	4	-	-	-	-	-	-	-	-	-	
Maryland...........	585	-	-	-	-	-	4	-	-	-	2
Dist. of Columbia..	9	-	-	-	-	-	-	-	-	-	-
Virginia..........	390	-	1	-	1	-	3	-	2	7	61
West Virginia......	192	-	-	-	-	-	-	-	-	2	13
North Carolina.....	18	-	1	-	2	-	2	1	1	-	2
South Carolina....	19	-	-	-	-	-	-	-	-	-	-
Georgia............	19	-	-	-	1	3	4	-	-	1	8
Florida...........	131	-	-	-	-	-	3	-	-	4	29
EAST SOUTH CENTRAL...	1,792	-	2	-	4	2	9	-	1	14	293
Kentucky.	88	-	-	-	1	-	1	-	-	6	133
Tennessee..........	1,454	-	-	-	3	1	6	-	-	7	148
Alabama............	133	-	1	-	-	-	-	-	-	1	12
Mississippi.......	117	-	1	-	-	1	2	-	1	-	-
WEST SOUTH CENTRAL. .	815	-	5	1	1	-	4	-	-	18	178
Arkansas...........	11	-	-	-	-	-	-	-	-	4	20
Louisiana..........	-	-	4	-	-	-	1	-	-	2	23
Oklahoma.	34	-	-	1	1	-	1	-	-	6	58
Texas..	770	-	1	-	-	-	2	-	-	6	77
MOUNTAIN.	1,709	-	-	-	2	-	1	-	-	-	10
Montana............	47	-	-	-	-	-	-	-	-	-	-
Idaho.	110	-	-	-	-	-	-	-	-	-	-
Wyoming..*.	158	-	-	-	-	-	-	-	-	-	1
Colorado...........	971	-	-	-	1	-	1	-	-	-	-
New Mexico.	224	-	-	-	-	-	-	-	-	-	4
Arizona............	110	-	-	-	-	-	-	-	-	-	5
Utah...............	89	-	-	-	1	-	-	-	-	-	-
Nevada. .	-	-	-	-	-	-	-	-	-	-	-
PACIFIC..............	1,539	-	6	-	-	-	5	-	-	8	56
Washington.	319	-	-	-	-	-	-	-	-	-	
Oregon.............	220	-	-	-	-	-	-	-	-	-	56
California.........	907	-	6	-	-	-	5	-	-	8	56
Alaska.............	21	-	-	-	-	-	-	-	-	-	-
Hawaii..............	72	-	-	-	-	-	-	-	-	-	
Puerto Rico.	-	-	-	-	-	-	-	-	-	2	10

Week No. TABLE IV. DEATHS IN 122 UNITED STATES CITIES FOR WEEK ENDED MARCH 30, 1968
(By place of occurrence and week of filing certificate. Excludes fetal deaths)

INTERNATIONAL NOTES QUARANTINE MEASURES

Additional Immunization Information for International Travel, 1967-68 edition, Public Health Service Publication No. 384

The following information should be included in Section 5:

ASIA

Aden and Protectorate of South Arabia - Page 51

Delete Aden and Protectorate of South Arabia. Insert: Southern Yemen (formerly Aden and Protectorate of South Arabia). Note: Smallpox, cholera, and yellow fever immunization requirements remain the same.

Burma - Page 52

Under Burma in the column, Recommendations by the County, delete the information concerning yellow fever. In the column "Required" under yellow fever, after the words infected areas, insert: Certificate required from travelers who arrive within 9 days of departure from an endemic zone or infected area.

Cyprus - Poge 54

Under smallpox add: except travelers arriving from an European country that is free from smallpox.

$$
\text { Iraq - Page } 57
$$

Under smallpox insert: Smallpox vaccination required when arriving from infected areas.

EUROPE

Belgium - Page 65

Delete the note concerning smallpox and insert: Smallpox vaccination is required from all arrivals, except arrivals from European countries, Azores and Madeira, Canary Islands, Reunion, Bermuda, Canada, French Guiana, Greenland, Guadeloupe, Martinique, Netherlands Antilles, St. Pierre and Miquelon, Surinam, and the United States of America. This exemption is extended to travelers who have been resident for more than 14 days in these countries immediately before arrival in Belgium. The certificate is, however, required from arrivals from all infected local areas.

Greece - Page 68

Delete the note concerning smallpox and insert: Smallpox vaccination is required from all arrivals, except arrivals from European countries, Cyprus, Turkey, Azores and Madeira, Canary Islands, Reunion, Bermuda, Canada, French Guiana, Greenland, Guadeloupe, Martinique, Netherlands Antilles, St. Pierre and Miquelon, Surinam, and the United States of America. The certificate is, however, required from arrivals from all infected local areas.

```
THE MOREIDITY ANDMORTALITY WEEKLY REPORT, WITHA CIRCULA-
DISEASE CENTER, ATLANTA, GEORGIA.
DIRECTOR, NATIONAL COMMUNICABLE DISEASE CENTER
CHIEF,EPIDEMIOLOGYPROGRAM,STATISTICSSECTION DAVID.J.SENCER,M.D.
IN ADDITION TO THE ESTAELISHED PROCEDURES FOR REPORTING MORBIDITY AND MORTALITY, THE NATIONAL COMMUNICAELE DISEASE CENTER WELCOMES ACCOUNTS OF INTERESTING OUTBREAKS OR CASE INVESTIGATIONS WHICH ARE OF CURRENT INTERESTHTO HEALTH OF COMMUNICABLE DISEASES. SUCH COMMUNICATIONS SHOULD BE ADDRESSED TO:
NATIONAL COMMUNICABLE DISEASE CENTER
ATLANTA, GEORGIA 30333
MOREIDITY AND MORTALITY WEEKLY REPORT
NOTE: THE DATA IN THIS REPORT ARE PROVISIONAL AND ARE BASED ON WEEKLY TELEGRAMS TO THENCDC BY THE INDIVIDUAL ON SATURDAY: COMPILEDDATA ON ANATIONAL BASISARERELEASED ON THE SUCCEEDING FRIDAY.
```


[^0]: * Available through Parasitic Disease Drug Service, NCDC.

 REFERENCE:
 ${ }^{1}$ Most, H: Drugs for parasitic infections. The Medical Letter, 5, 89, 1963.

 Trade names are provided for identification only, and inclusion does not imply endorsement by the Public Health Service or the United States Department of Health, Education, and Welfare.

